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Abstract 19 

The most important concern of hydrologists in the analysis of water resources for planning and 20 

managing sustainable water resources is the reliable and accurate prediction of streamflow. In this 21 

regard, the application of data mining algorithms has grown significantly in recent decades. In the 22 

present study, seven standalone decision tree models, namely Random Forest (RF), Random Tree 23 

(RT), REP Tree (REPT), instance-based learning (IBK), KStar, M5P, and Bagging, and six hybrid 24 

models, namely Random Sub Space-REP Tree (RS-REPT), Random Sub Space-Random Tree 25 

(RS-RT), Random SubSpace-M5P (RS-M5P), Random Committee-REP Tree (RC-REPT), and 26 

Random Committee-Random Tree (RC-RT), were used to predict streamflow in the Kurkursar 27 

River, Iran. A time series from 1989 to 2019 was used for training (8%) and testing (20%) phases. 28 

The RMSE, PSR, MAE, PBAIAS, and NSE statistical criteria were employed to evaluate the 29 

performance and accuracy of the models, and dimensional diagrams were drawn to assess them 30 

visually. The results showed that among all the standalone and hybrid models, BAGGING had the 31 

best performance (RMSE=0.51615 
𝒎𝟑

𝒔
, MAE=0.09201 

𝒎𝟑

𝒔
, NSE=0.7467, PBIAS=-10.511%, and 32 

PSR=0.50319) and the REP Tree (REPT) model the weakest performance (RMSE= 1.36649, 33 

MAE= 0.2451607, NSE= 0.3327, PBIAS -11.274, and PSR= 0.81685). The research results 34 

generally show that standalone and hybrid models performed very well. It can also be deduced that 35 

the performance of standalone and hybrid models are very close to each other, and there is no 36 

significant superiority between single and hybrid models.  37 

Keywords: Data mining, Hybrid model, Kurkursar river, Streamflow prediction 38 
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1. Introduction 44 

Streamflow prediction for watershed planning and management, drought risk assessment, 45 

and water resource development has become vital and challenging for engineers and hydrologists 46 

(Steinfeld et al., 2015). However, the complex nature of processes such as streamflow makes their 47 

accurate prediction difficult. At the moment, there are several hydrological methods for simulating 48 

the streamflow process, including physical, conceptual, experimental, Artificial Intelligence (AI), 49 

and Data Mining (DM) models (Jothiprakash & Magar, 2009; C. L. Wu & Chau, 2011). 50 

Today, the growth of technology has increased so much that it has changed the direction 51 

of our lives, and, in this regard, AI, which is a relatively new trend in science, has brought about 52 

fundamental changes. As a part of artificial intelligence, machine learning and data mining models 53 

are structured to employ fundamental relationships in data for prediction in different areas by 54 

modeling (Moosavi et al., 2020). The main purpose of machine learning is to design and develop 55 

intelligent applications that can access data and use them in the learning process (Travassos et al., 56 

2020).  57 

Many companies and organizations around the world need new techniques and tools, 58 

including machine learning and data mining, to achieve their ideals and fundamentals in dealing 59 

with the new challenges of today’s ever-evolving world (Dogan & Birant, 2020). In the field of 60 

engineering, to identify and solve problems, the testing process is divided into three models: White, 61 

Black, and Gray Boxes. The Black Box model does not pay attention to the internal mechanism of 62 

a system or a tool and focuses only on the output produced based on the selected input for the 63 

operating conditions (Henzinger et al., 2006). In the White Box model, the internal mechanism of 64 

a system is also tested (Korel, 1990). Finally, in the Gray Box modeling, the model structure is 65 

derived from physical principles by evaluating the parameters through experimental data (Bäumelt 66 
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& Dostál, 2020). Currently, there are several hydrological models to simulate this process (C. L. 67 

Wu & Chau, 2011), which can be categorized as physical, conceptual, experimental, and artificial 68 

intelligence (AI) models (Jothiprakash & Magar, 2009). Streamflow prediction using artificial 69 

intelligence techniques can be classified into four classes of data-based regression classification, 70 

evolutionary computation, fuzzy sets, and combined (with other models) (Cigizoglu, 2005; Yaseen 71 

et al., 2015). From another perspective, these models can be divided into experimental (black box), 72 

conceptual (gray box), and physical (white box) models (Worden et al., 2007). The black box 73 

(experimental) model is developed without considering the physical processes associated with the 74 

watershed. They only operate based on simultaneous input and output time series analysis (Azodi 75 

et al., 2020). Conceptual models or gray boxes are based on physical laws and can describe 76 

hydrological behavior by empirical expression. Gray box models require less data than physical 77 

models and, thanks to the calibration process, demand less computational volume and time 78 

(Salcedo-Sanz et al., 2016). Black box does not use physical process information, and its main 79 

focus in the modeling process is solely on data. Therefore, it can be said that in the black-box 80 

model, the input has a different structure for the forecasting process (Dastorani et al., 2010; Mehr 81 

et al., 2015). These models make decisions based on previously stored data and reduce the 82 

likelihood of error, hence solving the most complex and difficult problems very quickly without 83 

the slightest mistake. 84 

AI models have many advantages in science, especially by reducing repetitive processes 85 

and not requiring complex equations (Afan et al., 2015; Deo & Şahin, 2016; Shu & Burn, 2004). 86 

ANNs have a special place among AI models. Such models have been increasing due to various 87 

merits such as accuracy, convergence speed, and volume of calculations (Pradhan et al., 2020). 88 

One of the main advantages of ANNs is that they do not need comprehensive information on the 89 
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physics of the problem. They also have a very high capability to use incomplete data. Another 90 

advantage is that when we have missing data, using these models seems very reasonable (Minns 91 

& Hall, 1996). ANNs can be used in different fields of hydrological modeling, e.g., for rainfall-92 

runoff (Adnan et al., 2020; Alizadeh et al., 2020; Kassem et al., 2020; Parisouj et al., 2020; Snieder 93 

et al., 2020), sediment (Asheghi & Hosseini, 2020; Banadkooki et al., 2020; Ebtehaj et al., 2020; 94 

Ehteram et al., 2020; Meshram et al., 2020; Seo et al., 2020), flood (Cheng et al., 2020; Dtissibe 95 

et al., 2020; Kumar & Yadav, n.d.; Kurian et al., 2020; Luu et al., 2020; Obasi et al., 2020), and 96 

evapotranspiration (Guan et al., 2020; Malik et al., 2020; Mohamadi et al., 2020; Seifi & Soroush, 97 

2020; L. Wu et al., 2020). 98 

However, there are some drawbacks with the ANNs, and the main issue is finding the 99 

optimal values (solution) for weight and bias coefficients (Bashir & El-Hawary, 2009). To 100 

overcome this problem, optimization algorithms (metaheuristics) are commonly used to optimize 101 

the coefficients. Metaheuristic models use mathematical programming to determine the optimal 102 

value of one or more objective functions and include randomly structured search elements that 103 

follow empirical instructions; they are often inspired by observations of natural phenomena 104 

(McKinney & Lin, 1994; Nicklow et al., 2010). These algorithms examine many factors such as 105 

time and speed of convergence and identify how to reach the optimal global solutions. Further 106 

research should be conducted to investigate strategies for exiting local optimal solutions and those 107 

for increasing the accuracy and efficiency of such models. These algorithms can be applied with 108 

small modifications to various optimization problems, hence a significant improvement in finding 109 

high-quality solutions to difficult optimization problems. A common feature of such algorithms is 110 

local optimization exit mechanisms. 111 
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In this research, we use tree-based models to predict streamflow. Decision tree models can 112 

be applied to various fields. Random forest is a common decision tree model with applicability to 113 

various areas such as streamflow prediction (Abbasi et al., 2020; Araza et al., 2020; Pham et al., 114 

2020; Zeng et al., 2021), flood forecasting (Kim & Kim, 2020; Pahlavan-Rad et al., 2020; Schoppa 115 

et al., 2020; Vafakhah et al., 2020), evapotranspiration (H. Chen et al., 2020; Granata et al., 2020; 116 

Karimi et al., 2020; Saggi & Jain, 2020; Salam & Islam, 2020), groundwater prediction (Avand et 117 

al., 2020; W. Chen, Li, Tsangaratos, et al., 2020; Lahjouj et al., 2020; Norouzi & Moghaddam, 118 

2020; Sachdeva & Kumar, 2020), etc. In the present paper, daily data were utilized to predict 119 

streamflow. The variables used included precipitation (R) and discharge (Q). The models were of 120 

two categories, standalone and hybrid. The main purpose of this study was to predict the 121 

streamflow of the Kurkursar river in Iran via data mining algorithms. Moreover, we intended to 122 

evaluate the performance of hybrid models compared to standalone models to determine whether 123 

hybrid models would lead to more accurate results. In this study, we seek to compare the 124 

performance of single and hybrid models based on decision trees and measure the factors effective 125 

on the optimal selection of results to select the best combination for each model and their internal 126 

factors based on the physics of the problem is optimized. In this regard, the model composition is 127 

determined based on correlation, and the internal factors and parameters of the model will be 128 

optimized. We will also try to make a comparison between single and hybrid models and further 129 

evaluate their advantages and disadvantages. Finally, the research will be summarized and the 130 

success factors in modeling will be addressed and practical suggestions will be provided to 131 

increase the research efficiency. 132 

 133 

2. Materials and Methods 134 
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2.1. Case Study 135 

A catchment is a part of the land where the whole water that has fallen or flowed reaches 136 

an endpoint. As we know, Iran is a country located in West Asia. It is the second-largest country 137 

in the Middle East. The main catchments of the country include the Caspian Sea, the Persian Gulf 138 

and the Sea of Oman, Lake Urmia, the Central Plateau, the Eastern Plateau, and Qaraqom 139 

(Sarakhs). The Central Plateau basin has the widest, and the Sarakhs basin has the lowest area. 140 

closed or inland basins constitute about 4.73% of the country’s area. The Caspian Sea catchment 141 

area includes the sub-basins of Aras, Sefidrood, Kurkursar, Lahijan, Haraz, Atrak, and Qarasu. 142 

The study area of this research is the Kurkursar basin in Nowshahr city, Mazandaran province, in 143 

Northern Iran, with an area of about 75 km2. In terms of hydrological classification, it is considered 144 

as one of the Caspian sub-basins located between the longitudes 51023′28" and 51029′33" East 145 

and latitudes 33036′39" and  36029′48" North. The average elevation of the Kurkursar watershed 146 

is 890 meters, and, according to studies, the slope of the Kurkursar basin is 12.3 degrees in the 147 

direction of 111 degrees East. Figure (1) shows the geographical location of the area. 148 

[Fig 1] 149 

 150 

2.2. Algorithms and Models 151 

Decision trees are a new and advanced generation of data mining models that have 152 

extensively been developed in recent decades. These techniques can discover and extract 153 

knowledge from a database and create prediction models (Kazeminezhad et al., 2005). They are 154 

now among the most well-known data mining methods and tools for classification and prediction, 155 

which, unlike neural networks, generate laws. The decision trees explain their prediction in the 156 
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form of a set of rules. This research uses eight standalone (RF, RC, RT, REPT, IBK, KStar, M5P, 157 

Bagging) and six hybrid models (RS-REPT, RS-RT, RS-M5P, RC-REPT, RC-RT, and RC-RF) 158 

based on decision trees.  159 

 160 

2.2.1 M5P 161 

As well known, the M5P algorithm (Wang & Witten, 1996) is, in fact, an extended version 162 

of M5, which was discovered and developed by Quinlan (1992). Although there are many learning 163 

assembly models, there is no doubt that decision tree models have a special place among them. 164 

These models have precise performance and are known to be very cheap. Moreover, They show 165 

very good performance in terms of regression (Nhu et al., 2020). Another main advantage of 166 

decision trees is their quite desirable performance when very large data is in hand with high 167 

features and dimensions. Even when there is a great amount of missing data in a project, such 168 

models have high technical justification (Behnood et al., 2017). The decision trees create a tree-169 

like structure for prediction by starting with all the instructional examples, selecting the variable 170 

that best categorizes them, and forming subcategories. Tree branches result from an experiment 171 

performed by the algorithm with intermediate nodes at each stage. Predictions also appear in the 172 

tree leaves (Debeljak & Džeroski, 2011). The M5P tree model can numerically predict continuous 173 

variables from numerical traits, and the predicted results appear as multivariate linear regression 174 

models in the tree leaves (Frank et al., 1998; Wang & Witten, 1996). The division criterion is based 175 

on selecting the standard deviation (SDR) of the output values that reach the node as a measure of 176 

error. The expected reduction in error is calculated by testing each attribute (parameter) in the 177 

node. The SDR is obtained from Equation (1). 178 
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𝑆𝐷𝑅 =
𝜉

|𝜓|
× 𝛽 (𝑖) × [𝑠𝑑(𝜓) − ∑

𝜓𝐾

|𝜓|𝑘∈(𝐿,𝑅) × 𝑠𝑑(𝜓𝐾)] = 𝑠𝑑(𝜓) − ∑
𝜓𝐾

|𝜓|𝑘 × 𝑠𝑑(𝜓𝐾)              (1) 179 

Where SDR is the standard deviation reduction, 𝜓 represents the series of instances that 180 

reach the node, m indicates the number of instances that do not have missing values for this 181 

attribute, 𝛽 (𝑖) is a corrective factor, and 𝐿 and 𝑅 are sets that arise from the division of this 182 

attribute. 183 

2.2.2. Random Forest (RF) 184 

Random forest is one of the well-known and widely used algorithms in soft computing and 185 

data mining (Breiman, 2001; Chernick, 2002). Using this model is very simple and leads to high 186 

accuracy in forecasting with generally desirable results. This algorithm is also applicable to 187 

multiclassification and regression (de Santana et al., 2018; Quiroz et al., 2018) since it has a 188 

relatively low sensitivity to multicollinearity. This model achieves excellent results with missing 189 

and unbalanced data (W. Chen, Li, Xue, et al., 2020; Tsagkrasoulis & Montana, 2018). Each tree 190 

branch is identified using a random subset of variables/factors in each node during the RF 191 

modeling process. The final result of the modeling process is the average of all the trees (Cutler et 192 

al., 2007). To implement the stochastic forest model, it is necessary to define two basic parameters, 193 

namely the number of variables (factors) used in each stage of the tree building process (mtree) 194 

and the number of trees to be built in the forest (ntree). In order to minimize the generalization 195 

error, the mentioned parameters must be optimized (Liaw & Wiener, 2002). Some researchers 196 

(e.g., Bryman, 2001; Liaw and Wiener, 2002) have stated in their studies that even one variable 197 

(m = 1) can be accurate, while others (e.g., Grömping, 2009) consider at least two variables to be 198 

necessary. However, in order to avoid using weaker regressions as a separator, it is better to assume 199 
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(m = 1,2,3, ...). RF is a set of classification and regression (CART) trees calculated from Equation 200 

(2): 201 

{𝜑(𝜏, 𝜃𝜉), 𝜉 = 1,2, … , 𝑖, … }                                                                                               (2) 202 

where 𝜑 is random forest classification, 𝜏 is an input variable, and {𝜃𝜉} represents 203 

independent and distributed random vector variables used to generate each regression and 204 

classification tree. The calculation of important variables is based on the mean Gini coefficient 205 

reduction and the mean accuracy reduction. The Gini coefficient is an error that can be deduced 206 

from Equation (3): 207 

𝐺𝑖𝑛𝑖  coefficient = 1 − (1 − ∑ 𝑃2(𝑐|t)𝐶 ) = ∑ 𝑝𝑚𝑘̂ × (1 − 𝑝𝑚𝑘̂)𝑘
𝑘=1                                               (3) 208 

In the above formula, (p_mk) ̂ indicates the probability of correct classification, C is the number 209 

of classes, t represents a tree node, and P stands for the relative frequency of c. The Gini coefficient 210 

results from multiplying the probability of correct and incorrect classifications (Jiang et al., 2020). 211 

2.2.3. Reduced Error Pruning Tree (REPT) 212 

Decision trees can usually be divided into two types of tree (hierarchical) structure and 213 

rules (if-then). If the decision tree is complex, the tree structure and rules may be destroyed (X. 214 

Wu & Kumar, 2009). Hence, pruning steps are primarily used for a complex tree to facilitate the 215 

interpretation and analysis of results. Furthermore, pruning decision trees is essential in 216 

optimization to increase computational efficiency and classification accuracy (Rokach & Maimon, 217 

2008). There are two standard pruning methods: pre-pruning (back pruning) and post-pruning 218 

(pruning forward). The pruning method comprises two growth and pruning stages, allowing one 219 
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to over-fit the data and then prune the grown trees. Post-pruning methods perform better than pre-220 

pruning (Mahmood et al., 2010). 221 

Pruning error reduction (REP) is a post-pruning method for decision trees, and the REPT 222 

model, as one of the fastest methods of model training, is a combination of REP and decision tree 223 

algorithm. It is developed based on a decision/regression tree to reduce variance (Breslow & Aha, 224 

1997). In the decision tree algorithm, the size of the tree affects the accuracy of data classification. 225 

On the other hand, combining two algorithms reduces the synergy in the structure of a decision 226 

tree (Sharafati et al., 2019). Therefore, this complexity in the REPT model is reduced by the REP 227 

pruning technique, one of the most popular and well-known pruning methods that can target some 228 

branches and leaves of trees without affecting the accuracy and precision of the model (Mahmood 229 

et al., 2010).  The two main advantages of this method include simplifying the tree without 230 

reducing accuracy and avoiding the overfitting problem (Khosravi, Mao, et al., 2018; Khosravi, 231 

Pham, et al., 2018). The basic REPT relation is given in Equation (4): 232 

𝐺𝑎𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 (𝜂, 𝜉) =
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝜉)−∑ |

𝜉𝑖
𝜉

|𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝜉𝑖)𝑛
𝑖=1

− ∑|
𝜉𝑖
𝜉

|𝐿𝑜𝑔2|
𝜉𝑖
𝜉

|
                                                                         (4) 233 

In this regard, the property 𝜂 belongs to the educational dataset 𝜉 with subsets 𝜉 i = 1,2,3,…, n. 234 

2.2.4. Bagging (BA) 235 

Bagging is a machine learning method proposed by Breiman (1996). This algorithm 236 

increases classification accuracy by combining the classification of randomly generated training 237 

sets. It can reduce the variance of the basic algorithms and adjust the estimation to the expected 238 

conclusion to improve the accuracy of a model (Dieu Tien Bui et al., 2016; Peters et al., 2002). 239 

Also, this method can eliminate the defects of learning components and improve the predictive 240 
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ability of weak learners (Yin, 2020). Moreover, due to its sensitivity to minor changes in the 241 

training data, this technique can increase the accuracy of the prediction results (Shirzadi et al., 242 

2018). Bagging is most useful when regression models with high variance and low bias, such as 243 

regression trees, are fully grown (Gweon et al., 2020). It creates multiple instances from the same 244 

dataset by modifying the bootstrap technique. Several separate trees are created for the same 245 

prediction and used to generate a whole prediction. The final prediction of the process can be 246 

obtained by voting or averaging for classification and regression problems (Erdal & Karahanoğlu, 247 

2016; Ribeiro & dos Santos Coelho, 2020). 248 

2.2.5. Random Committee-REPT (RC-REPT) 249 

Random Committee (RC) is a meta-algorithm that possesses classifiers that can be used at 250 

the service of the learning power. In the classification process, predictions are made by estimating 251 

the average probability, not by voting. This algorithm is used for classification and regression 252 

problems depending on the learner base. It can also be combined with other models to form a 253 

hybrid classifier model, which in the present study is developed by tree pruning modifiers 254 

generating predictions with a direct average probability (Sharafati et al., 2019). They are used to 255 

improve the trainability of the model as well as the model that is combined with it (classifier). By 256 

this method, a combination of classifier-based methods can be created. For this purpose, WEKA 257 

software is used in which, generally, the whole process is divided into two stages of preprocessing 258 

and classification. The processing step involves selecting the attribute. In this study, not all 259 

attributes of the dataset are necessary for analysis, which leads to a reduction in dimensions and 260 

ensures better performance. The second phase involves using machine learning techniques such as 261 

random forests, random committees, and random trees to classify samples through voting 262 

(Niranjan et al., 2018). 263 
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2.2.6. Random Subspace-REPT (RS-REPT) 264 

Another method for group learning is Random Subspace (RS). Ho (1995) first proposed 265 

the RS model as a comprehensive classical algorithm. This model has many similarities with the 266 

bagging model. It seeks to diversify learners in sampling the feature space. All model components 267 

are constructed with the same training data, but each feature is selected randomly, leading to the 268 

group's diversity. For the most part, the number of attributes in all committee components is at the 269 

same level. When it comes to classification, a group decides either by a majority vote or by the 270 

weight of votes. Regression is simply done with the average output of the components. This 271 

method aims to increase the general accuracy of decision-based classifiers without compromising 272 

the accuracy of training data, which is one of the major and most common problems of tree-based 273 

classification (Ho, 1998). Many studies perform RS in pairs with different classifiers having the 274 

training subsets randomly made from the main training subsets, which is the only difference from 275 

the Bagging algorithm. In this method, the complications of each sub-classifier in the final 276 

prediction are obtained through the combined voting method (Bertoni et al., 2005). 277 

2.3. Evaluation criteria 278 

It is necessary to use evaluation indicators to evaluate a model's prediction performance in 279 

any research. Accordingly, in the present study, different statistical criteria are used to assess and 280 

compare the performance of the models. These criteria include the coefficient of determination 281 

(R2), root mean square error (RMSE), absolute mean error (MAE), Nash-Sutcliffe efficiency 282 

(NSE) coefficient, bias, and the squared ratio of mean squared error to standard deviation (PSR). 283 

Table (1) summarizes the results for the above indicators. In addition, the qualitative and 284 

quantitative values, as well as their allowable ranges, are specified. “ob” represents the observed 285 

values, and “pr” is the calculated or predicted value.  286 
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[Table 1] 287 

 288 

2.4. Best input combination  289 

Finding the relationship between different variables is a major challenge in this process. It 290 

can be simply stated that the preliminary and, at the same time, the most important part in the 291 

modeling process is the research to determine the effective factors in the prediction process. 292 

Therefore, in the first phase of the research, the effective factors that influence the river discharge 293 

are determined, and then, with the help of the Pearson coefficient, the effect of each factor is 294 

determined. The most important factors in streamflow prediction include temperature, humidity, 295 

precipitation, evapotranspiration, pressure, wind direction, and discharge. However, among these 296 

factors, only precipitation and discharge have the greatest impact on the forecasting process, and 297 

the effects of other factors can be ignored. The time series in this research are on a daily basis for 298 

the data from 1989-2019 (80% for training and 20% for testing). Table (2) shows some statistical 299 

parameters for the datasets used in the training and testing phases.  300 

[Table 2] 301 

We determined the correlation between input and output variables with the CC coefficient, 302 

shown in Table (3). It should be noted that the input variables include R(t), R(t-1), R(t-2), … , R(t-303 

6), Q(t),Q(t-2),…,Q(t-5), and the output variable is Discharge(Q(t)). Table (4) shows the 304 

combinations for the input variables. 305 

 306 

[Table 3] & [Table 4] 307 

 308 
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3. Results 309 

This research aims to predict the streamflow of the Kurkursar river in Iran. First, the 310 

required data should be collected and standardized to this aim. The time series of the research data 311 

is on a daily basis for precipitation (rainfall) and discharge. After collecting and arranging the data 312 

structure, the Weka program was employed to implement the models developed by the University 313 

of Waikato. To this end, the data were entered into the program, and the best combination for each 314 

model was determined in two phases of training (80%) and testing (20%). The implemented 315 

models used in the present study belong to two categories of standalone and hybrid. However, 316 

being developed based on the decision tree is their main common trait. Decision trees are helpful 317 

when the volume of data is very high. As fully introduced in the previous sections, six standalone 318 

and eight hybrid models were used. Table (5) shows the correlation coefficient values in the two 319 

phases of training and testing for the standalone models used to choose the best combination.  320 

[Table 5] 321 

All the data were evaluated to determine which combination would be the best solution 322 

for each model. Finally, for the M5P model, the combination of model 2 led to the best solution 323 

(CC=0.9264) in the test phase. Also, for Random Forest, the combination of model 4 (CC=0.953); 324 

Random Tree, model 4 (CC=1.3945); REP Tree, model 4 (CC=1.0334); Bagging, model 4 325 

(CC=1.0314); IBk, model 4 (CC=1.4402); and Kstar, model 4 (CC=1.3323) was identified. 326 

Therefore, for all models (except for the M5P model), the combination of model 4 achieved the 327 

best results in the test phase. 328 
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In the next stage, the value of the coefficient of determination (R2) was determined, for 329 

which the results of the testing phase with the standalone and hybrid models are shown in Table 330 

(6). Of note, R2 is a statistical measure of the data close to the fitted regression line. 331 

[Table 6] 332 

The results in Table (6) show that based on the R2 coefficient, the M5P model had the best 333 

(R2=0.7839) and the KStar model had the weakest performance (R2=0.5228) among the standalone 334 

and RS-M5P (R2=0.7613), and RS-RT (R2=0.6584) had the best and weakest performances, 335 

respectively, among the hybrid models.  336 

One of the main goals of modeling is to reduce error. In the present paper, RMSE, MAE, 337 

PSR, NSE, and PSR indices were used to evaluate the models, which are shown in Table (7).  338 

[Table 7] 339 

Table 7 shows the BA has the lowest error among standalone models 340 

(RMSE=0.5161m3/sec), and REPT has the highest error (RMSE=1.3664 m3/sec). Therefore, BA 341 

has the best performance, and the REPT model has the weakest performance. Among the hybrid 342 

models, RS-M5P has the lowest error and the best performance (RMSE= 0.77176 m3/sec), and the 343 

RS-RT model has the highest error and the weakest performance (RMSE= 0.91089 m3/sec). 344 

To assess the predictive models used in the current study, several visual comparisons were 345 

made through different graphical figures including, time-series plots (Figure 2), scatter plots 346 

(Figure 3), and error graphs (Figure 4). From those figures, it can be concluded that among the 347 

standalone models, the IBK model is the closest to the observational data in predicting the 348 

minimum values. In simpler terms, this model better predicts the minimum values. However, the 349 

BA model's weakest performance in predicting the minimum values. In addition, if we look at 350 
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hybrid models, we will see that the results for predicting minimum values are very close to the 351 

observational data. Among these models, the performances of the RS-RT, RS-M5P, and RC-RT 352 

models are very close and have almost the same performance. In general, among all the models 353 

(both single and hybrid), the M5P model has the best performance, and the K Star model has the 354 

weakest performance for the minimum values. 355 

[Figs 2-4]  356 

To assess the probabilistic features of predictive models, their box plot diagrams are 357 

shown in Figure (5). From the figure, it is evident that the IBK model is the closest to the 358 

observational data, and the RC-REPT hybrid model has the weakest performance in the first 359 

quarter (Q1). However, the performances are slightly different with the median data, with the M5P 360 

and RF models having the best performance and being closest to the observational data. Notably, 361 

the M5P model is slightly better than the RF model. Furthermore, the RC-REPT model has the 362 

poorest performance in predicting midpoints than the observational data. In the third quarter (Q3), 363 

KStar is the best, and RS-RT is the weakest model. Finally, the RT model can predict the maximum 364 

data better, and the K Star model is ranked the lowest. 365 

 366 

[Fig 5] 367 

The "Bag size percentage" parameter specifies a certain number of samples for each 368 

member (classifier) of the group. This parameter is determined by the size of the training set 369 

(number of training samples) and by distance, and its value is between 10 and 100. The size of 370 

each bag is defined as a percentage of the size of the training set. The number of iterations is a 371 

measure to stop the error in Weka. The principle of learning in the network is observed in 372 
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iterations. The dataset is injected into the algorithm several times, and the algorithm can detect 373 

differences in the training data by increasing or decreasing the network parameters. This value is 374 

usually assumed to be 10, while some researchers assume it to be 100. The parameter seed is, in 375 

fact, a random number. Once its value is fixed, even a random algorithm will behave definitively, 376 

and using the same seed will always lead to the same random numbers. There is no definite 377 

criterion for determining this parameter, and its optimal value can be calculated by trial and error. 378 

Out-of-bag (OOB) error is used to measure the predictive error of random forests, reinforced 379 

decision trees, and other machine learning models using Bootstrap aggregation. The bagging 380 

model uses sub-sampling with an alternative property to create training examples for model 381 

learning. In the present study, optimal coefficients evaluated automatically were measured. The 382 

optimized coefficients were tested by trial and error for each model to improve the prediction 383 

results. The best-case scenario for the M5P was when the Batchsize value was 100. In this case, 384 

the value of RMSE = 1.273 m3/sec is the best solution. To evaluate the effect of Batchsize with 385 

trial and error in the range [5-200], the above parameter is added five units in each step to measure 386 

its effects. The study results for the mentioned range show that neither increasing nor decreasing 387 

this value reduces the error rate. Therefore, the same initial solution of 100 is chosen as the optimal 388 

solution. Assuming that the optimal value of the Batchsize parameter = 100 is constant, we can 389 

find the optimal MinnumIstance solution, the value of which is automatically equal to 4. The 390 

optimal solution is found by trial and error with [20-1] intervals. The results show that from 1 to 391 

4, it does not have any effect on reducing the error. However, for the value of 5, the error rate 392 

increases and reaches 1.466. This error remains constant for the values from 5 to 20. Accordingly, 393 

the value of 4 is selected as the optimal solution for the above parameter. If the Build Regression 394 

Tree parameter is set to False, the error value will be 1.273, but if it is set to True, the error value 395 
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will reach 1.7247, which indicates an incremental state. Therefore, the default False state is 396 

selected as the optimal model since error reduction is aimed. Moreover, the Debug values and the 397 

Do Not Check Capabilities in the false mode lead to the optimal solution. If the value of the 398 

Unpruned parameter is set to False, the error value will be 1.273. However, in the True mode, the 399 

error reaches 1.2344, which indicates a reduction in the amount of error. Therefore, the optimal 400 

solution will be in the True mode. If the value of the above parameter is set to False, the error value 401 

will be 1.273 m3/sec. But if the above parameter is set to True, the error reaches 0.8181 m3/sec, 402 

which indicates a reduction in error. Therefore, the optimal solution is obtained when this 403 

parameter is in the True state. Finally, the ultimate solution was the best possible case for the M5P 404 

model (Optimized Batchsize=100; MinnumIstance & Num decimal place=4; Build 405 

Regression=Tree; Debug=Do Not Check; Capabilities=Save Instances; False, Unpruned & Use 406 

Unsmoothed=True). Several trials and errors were carried out to find the optimal coefficients in 407 

the RF model. For Bag size percentage, trial and error were performed from 5% to 100%. The 408 

results show that by increasing this parameter, the error rate decreases, and the best solution is 409 

reached at 100%. Similarly, the trial and error range from 5% to 100% for the Batch size parameter. 410 

The results show that increasing or decreasing the value of this parameter does not affect the error 411 

rate. Therefore, the same solution of 100% is selected as the optimal one. To calculate the Max 412 

Depth parameter, trial and error are performed within the [0-15] interval. The results indicate that 413 

the best solution is obtained when its value is equal to zero, and the trend of error from 1 to 15 414 

increases. The best solution for the Num Execution Slots parameter is one, and decreasing or 415 

increasing its value does not affect the error rate. In the trial and error, this parameter was 416 

maintained within the range of [0-10], and it was observed that the error value remained constant 417 

without any significant change. The optimal solution was achieved with 100 repetitions, and the 418 
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error rate was 0.5466. To find the optimal solution in the [10-200] interval, an error was made after 419 

ten repetitions, which was minimized to 40 repetitions. Of note, the error rate up to 60 repetitions 420 

had a decreasing trend, but the optimal solution still belonged to repetition 40. For seed parameters, 421 

trial and error were performed in two intervals of [0-1] and [0-10]. In the first interval, 0.1 was 422 

added in each step to measure the effects, and for the second interval, a unit was added. The optimal 423 

state of the model occurred in the first interval, where 0.1 was added. Another result of the trial 424 

and error was that increasing the values in the first interval increased the error, but in the second 425 

interval, the error remained constant. Increasing this number increased the error rate. Therefore, it 426 

can be claimed that increasing the above values causes sensitivity to the error value. There was 427 

also a trial and error to optimize the coefficients of the REP Tree model. The best solution for the 428 

k value parameter was 1, which reduced the error, while the optimal solution was 0. Increasing 429 

this value also increased the error. Increasing the value of the Batchsize parameter did not affect 430 

the error. In the trial and error, the range of [5-100] was examined for this parameter. The results 431 

showed that the amount of error remained constant within the whole range mentioned; the amount 432 

of error did not show sensitivity to Batch size. The best solution for the MaxDepth parameter was 433 

zero. The interval [0-100] was considered for trial and error. The amount of error increased at first 434 

but decreased significantly over time. The best solution for the MinNum parameter was the default 435 

value of zero. In the range of [0-10], trial and error was performed, which showed that the amount 436 

of error increased with an increase in the value of this parameter. This increase in error had an 437 

upward trend and reached its maximum at the value of 10. Accordingly, the best value for the 438 

above parameter was 0.001, with one error occurring within [0-0.01]. In terms of MinVariance 439 

Propparameter, error increased with an increase in its value with an upward trend. Accordingly, 440 

the error rate was at its lowest level at the zero value for this parameter. For the Num Folds 441 
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parameter, the value of zero led to the lowest error and reached the optimal solution. Increasing 442 

this parameter also increased the error rate. However, this increase did not have an upward trend 443 

and was increasing and decreasing intermittently, with the error gradually getting far from the 444 

optimal solution. Finally, the results showed that increasing the Seed parameter had no effect on 445 

the error rate, and as the value of this parameter increased, the error rate remained constant. 446 

Therefore, number one was chosen as the optimal value. To summarize the above discussion, 447 

generally, the program had a good performance. However, to improve the model's performance 448 

with all parameters, they should be regulated by trial and error to obtain more optimal values. In 449 

general, the results of the forecast were desirable. The optimum values of the parameters used in 450 

the predictive models are presented in the Table 8. 451 

[Table 8] 452 

4. Discussion  453 

This research aimed to predict streamflow in the Kurkursar catchment in Iran. To this aim, 454 

the desired data were collected, which included precipitation and discharge in time series on a 455 

daily basis. The correlation coefficient between input and output variables was determined, and 456 

different combinations for the model were identified. The models were divided into standalone 457 

and hybrid categories. Data were classified into two training and testing classes, and Weka 458 

software was used to analyze and evaluate the data.  459 

The presented model had a significant effect on reducing variance. It also largely prevented 460 

overfitting. Random forests use the bagging algorithm in the learning process, and to reduce 461 

overfitting and variance, we created several trees and some data sets in the first step. In the next 462 

step, we combined them with the output of the desired model, resulting in which overfitting was 463 
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greatly reduced. Generally, the performance meaningfully improves when the missing data are 464 

incorporated in the modeling. 465 

Random forests have wide applicability in both classification and regression modes, hence 466 

their specific position among engineers. However, these models have weaknesses. First of all, 467 

many trees are used in random forests, which leads to increased calculations and reduced speed 468 

and accuracy of forecasts. Another common problem with these models is that as the number of 469 

trees and the output of the model increase, the training period becomes longer. In this case, the 470 

model will try to base its final decision on the most votes, prolonging the training process. As for 471 

the M5P model, it is based on creating a tree similar to the traditional decision tree (expressed by 472 

CART). The specific difference of this model is in its leaves, which generally follow multiple 473 

linear regression. It has a relatively good ability to predict various parameters, but its major 474 

disadvantage is that changes in data (even small data) may cause instability in the model structure. 475 

With an increase in the number of changes, the response time also increases, adding to the 476 

complexity of the problem. 477 

Moreover, it allocates more time to the training process than other random forest models 478 

do, and it faces difficulties when predicting continuous values. However, combining this model 479 

with bagging in most cases improves the results and increases the accuracy of prediction. Many 480 

researchers have used this combination in predicting hydrological processes and have reported 481 

favorable results (Duie Tien Bui et al., 2020; Khosravi, Mao, et al., 2018; Melesse et al., 2020). 482 

Another machine learning method used in this article was IBK, which is by nature a lazy 483 

learner. It uses linear search algorithms to find the nearest neighbor. The Euclidean distance is also 484 

used in this model to evaluate the position of the samples. IBK considers distance from the 485 

validation data for weighing estimates of more than one neighbor. Generally, this algorithm has 486 
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reported good performance in many areas (Angarita-Zapata et al., 2020; Gandhi & Armstrong, 487 

2016; Jabbar & Mohammed, 2020; Khosravi et al., 2019; Pattnaik et al., n.d.; Shabani et al., 2020). 488 

Moreover, for interpreting the performance of this model, we can say that there is no special 489 

training course required. More simply, the learning process occurs when we intend to make real 490 

predictions and, in this way, the training data is stored and used. This speeds up reaching the 491 

solution. This is while other algorithms (such as vector machines, etc.) devote much more time to 492 

the training process, hence their prolonged process to reach the solution. To add to the above 493 

advantage, because the algorithm does not need training before prediction, new data will be added 494 

seamlessly, ensuring that the algorithm's correct operation is not compromised. 495 

Moreover, implementing this algorithm is very easy and fast because it lacks complex and 496 

ambiguous parameters. It uses only two parameters, namely the value of K and the distance 497 

function. Therefore, it is a very easy algorithm to implement. However, despite all the above, this 498 

algorithm also has weaknesses. For example, working with big data in this algorithm is very 499 

difficult, and interpretation and analysis in such cases are also unclear. Moreover, with large data, 500 

the cost of calculation gets very high. In addition, the distance between the new point and each 501 

existing point is very large in this model, which lowers its performance. 502 

5. Conclusion 503 

Four standalone and hybrid models based on the decision tree for rainfall-runoff prediction in the 504 

Korkorsar watershed in northern Iran were evaluated in the present study. This study aims to use 505 

new decision tree algorithms to predict rainfall-runoff that can be used in other areas of water 506 

resources management engineering (such as suspended sediment assessment, flood forecasting, 507 

evapotranspiration, etc.). The modeling process indicated that the factor R (t) is the most important 508 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Highlight

Sticky Note
The basin name used previously was Kurkursar, why is the name change? The same is reflected on Figure 1, please check!

Highlight

Sticky Note
please call it precipitation also instead of notation only



24 
 

determinant of precipitation-runoff. Other cases of importance included Q (t-1), Q (t-2), R (t-1), Q 509 

(t-3), etc., respectively. In this study, it can be inferred that the use of different combinations of 510 

variables leads to different levels of performance of the models. The findings showed that 511 

predictive accuracy reaches its maximum value (maximum predictive power) when utilized 512 

variables with the highest CC. 513 

Moreover, the variables with the lowest CC greatly reduced the predictive power of the model. 514 

The results of research modeling show that hybrid models performed better than individual 515 

models, but it is not possible to comment on their absolute superiority. Therefore, it can be said 516 

that they may not be equally successful in all cases. 517 

If these models have good and reliable results for a set of data covering a short period, if the period 518 

is longer, modeling accuracy will increase accordingly. Research algorithms (based on the decision 519 

tree) can be useful for basins with limited measurement networks and fewer. 520 

Our results demonstrated that the proposed algorithms could be reliable and cost-effective for 521 

predicting hydrological processes in water resources management. These models are much more 522 

useful and cost-effective for developing countries where the cost of measuring some hydrological 523 

parameters is very high. Of course, these results cannot be generalized to all basins and 524 

hydrological processes in absolute terms. But without a doubt, it can be said that algorithms have 525 

very high power and accuracy in predicting different hydrological processes. 526 

The above models showed acceptable and desirable performance in streamflow prediction. 527 

All coefficients were examined by trial and error, and some results were stated in the present 528 

article. Standalone models performed well, and while hybrid models were expected to have 529 

improved performance, they showed very close results to the former. However, in a qualitative 530 
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evaluation of the results, all the models were within a good to good range. Therefore, the following 531 

suggestions are made for further research: 532 

- Use of other tree models and comparison of the results with the present research; 533 

- Employing the presented models in this study in other hydrological and environmental 534 

fields to study their accuracy; 535 

- Comparison between the models here and other models (such as ANN, SVR, ANFIS, 536 

gene expression-Bayesian networks, etc.) in terms of accuracy; 537 

- Use of other effective factors in streamflow prediction (temperature, humidity, 538 

evaporation, transpiration, etc.) in modeling for determining their effects on the 539 

efficiency of models; 540 

- Combining and comparing other different input models; 541 

- Further evaluation of the rate of delay with the parameters; and 542 

- A more comprehensive study of the physics of the problem and the structure of the 543 

analyzed models. In this regard, their weaknesses can be identified, and necessary 544 

measures are taken to strengthen them. 545 
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Fig 1. Location of the Kurkursar River 2 
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Fig 2. Time variation graphs for the predicted and observed values (testing phase)  19 
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Fig 3. Scatter plots for the predicted and observed values (testing phase) 27 

 28 

 29 

 30 

 31 

y = 0.7076x + 0.4259
R² = 0.6584

0

10

20

30

40

0 20 40 60

P
re

d
ic

te
d

 Q
(m

3
/s

)

Measured Q(m3/s)

Random SubSpace-Random Tree-Train

predicted

Linear
(predicted)

y = 0.6736x + 0.4236
R² = 0.7613

0

5

10

15

20

25

30

0 20 40 60

P
re

d
ic

te
d

 Q
(m

3
/s

)

Measured Q(m3/s)

Random SubSpace-M5P-Train

predicted

Linear
(predicted)

y = 0.655x + 0.4976
R² = 0.7385

0

10

20

30

0 20 40 60

P
re

d
ic

te
d

 Q
(m

3
/s

)

Measured Q(m3/s)

Random Committee-REP Tree-Train-
Test

predicted

Linear
(predicted)

y = 0.8634x + 0.2459
R² = 0.6959

0

10

20

30

40

0 20 40 60

P
re

d
ic

te
d

 Q
(m

3
/s

)

Measured Q(m3/s)

Random Committee-Random- Test

predicted

Linear
(predicted)



6 
 

   32 

   33 

   34 

-20

-10

0

10

20

30

0 500 1000 1500Q
 (

m
3

/s
)

Training Dataset

Bagging

error

-20

-10

0

10

20

30

40

0 500 1000 1500

Q
 (

m
3

/s
)

Training Dataset

IBK

error

-40

-30

-20

-10

0

10

20

0 500 1000 1500

Q
 (

m
3

/s
)

Training Dataset

K Star

error

-10

0

10

20

0 500 1000 1500

Q
 (

m
3

/s
)

Training Dataset

M5P

error

-15

-10

-5

0

5

10

15

20

0 500 1000 1500Q
 (

m
3

/s
)

Training Dataset

Random Forest

error

-20

-10

0

10

20

30

40

0 500 1000 1500

Q
 (

m
3

/s
)

Training Dataset

Random Tree

error



7 
 

   35 

   36 

   37 

Fig 4. Error graphs for the predicted and observed values (testing phase) 38 
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Fig 5. Box plots for determining the best performance with the applied algorithms 41 
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Table 1. Performance indicators for streamflow prediction 1 

Factor Equation Factor role Ref Range Performance 

R2 

R2

= 1 − (
∑ (𝑄𝑡

𝑜𝑏 − 𝑄𝑡
𝑝𝑟
)
2i=N

i=1

∑ (𝑄𝑡
𝑜𝑏)2i=N

i=1

) 

 

To show the 

accuracy of 

prediction 

(Faizollahza

deh Ardabili 

et al., 2018) 

0.7≤ R2 ≤ 0.1 Very good 

0.6 ≤ R2 ≤0.7 Good 

0.5 ≤ R2 ≤ 0.6 Satisfactory 

0 ≤ R2 ≤ 0.5 
Unsatisfactor

y 

RMSE RMSE = √
1

N
∑(𝑄𝑡

𝑝𝑟
− 𝑄𝑡

𝑜𝑏)
2

i=N

i=1

 

 

To show 

accuracy 

(Faizollahza

deh Ardabili 

et al., 2018) 
- 

The lower 

value is  

better 

MAE 
𝑀𝐴𝐸 =

1

N
∑(𝑄𝑡

𝑝𝑟
− 𝑄𝑡

𝑜𝑏)
2

i=N

i=1

 

 

To show 

accuracy 

(Faizollahza

deh Ardabili 

et al., 2018) 
- 

The lower 

value is  

better 

NSE 
NSE = 1 −

∑ (𝑄𝑡
𝑝𝑟
− 𝑄𝑡

𝑜𝑏)
2i=N

i=1

∑ (𝑄𝑡
𝑝𝑟
− 𝑄𝑡

𝑝𝑟̅̅ ̅̅ ̅)
2

N
i=1

 

 

Predictive 

power 

classification 

(Moriasi et 

al., 2007) 

0.75 < NSE ≤ 

1.00 
Very good 

0.65 < NSE ≤ 

0.75 
Good 

0.50 < NSE ≤ 

0.65 
Satisfactory 

0.4 < NSE ≤ 0.50 Acceptable 

NSE ≤ 0.4 
Unsatisfactor

y 

PBIAS PBIAS =
∑ (𝑄𝑡

𝑝𝑟
− 𝑄𝑡

𝑜𝑏)i=N
i=1

∑ 𝑄𝑡
𝑝𝑟i=N

i=1

 

Predictive 

power 

classification 

(Legates & 

McCabe Jr, 

1999) 

PBIAS < ±10% Very good 

±10% ≤ PBIAS 

<±15% 
Good 

±15%≤ PBIAS < 

±25% 
Satisfactory 

PBIAS ≥ ±25% 
Unsatisfactor

y 

RSR 
PSR = √

∑ (𝑄𝑡
𝑝𝑟
− 𝑄𝑡

𝑜𝑏)
2i=N

i=1

∑ (𝑄𝑡
𝑝𝑟
− 𝑄𝑡

𝑝𝑟̅̅ ̅̅ ̅)
2

i=N
i=1

 

 

Predictive 

power 

classification 

(Gupta et 

al., 1999) 

0 ≤ RSR ≤ 0.50 Very good 

0.50 < RSR ≤ 0.60 Good 

0.60 < RSR ≤ 0.70 Satisfactory 

RSR > 0.70 
Unsatisfactor

y 

 2 

 3 

 4 

Table
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Table 2. Statistical parameters for train and test phases 5 

 6 

 7 

Table 3. Correlation coefficient (CC) between input and output variables 8 

 9 

 10 

Table 4. Input variable combinations 11 

 12 

 13 

Dataset R Q 

Min Train 0 0.002 

Test 0 0.004 

Max Train 149 73.1 

Test 147 41.4 

Mean Train 3.415 1.298 

Test 3.626 1.115 

StdDEV  Train 11.165 2.168 

Test 11.451 1.893 

Input variable Output 

variable Q(t-5) Q(t-4) Q(t-3) Q(t-2) Q(t-1) R(t-6) R(t-5) R(t-4) R(t-3) R(t-2) R(t-1) R(t) 

0.211 0.225 0.251 0.297 0.463 0.0612 0.0552 0.0681 0.0705 0.124 0.281 0.563 Q(t) 

Input variables Model Number 

R(t) 1 

R(t), Q(t-1) 2 

R(t), Q(t-1), Q(t-2) 3 

R(t), R(t-1), Q(t-1), Q(t-2) 4 

R(t), R(t-1), Q(t-1), Q(t-2), Q(t-3) 5 

R(t), R(t-1), Q(t-1), Q(t-2), Q(t-3), Q(t-4) 6 

R(t), R(t-1), Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5) 7 

R(t), R(t-1), Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5), Q(t-6) 8 

R(t), R(t-1), R(t-2), Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5), Q(t-6) 9 

R(t), R(t-1), R(t-2), R(t-3), Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5), Q(t-6) 10 

R(t), R(t-1), R(t-2), R(t-3), R(t-4), Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5), Q(t-6) 11 

R(t), R(t-1), R(t-2), R(t-3), R(t-4), R(t-5), Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5), Q(t-6) 12 

R(t), R(t-1), R(t-2), R(t-3), R(t-4), R(t-5), R(t-6), Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5), 

Q(t-6) 

13 
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Table 5. Selection of the best combinations for the standalone models 14 

 15 

coefficient for standalone and hybrid models 2RTable 6.  16 

Test Train Models Model 

Number 

0.7186   0.5485 BA 1 

0.7839 0.6586 M5P 2 

0.7629 0.9431 RF 3 

0.6581 0.9983 RT 4 

0.6752 0.7728 REPT 5 

0.732 0.9905 IBK 6 

0.5228 0.9398 K Star 7 

0.7347 0.9497 RC-RF 8 

0.6959 0.9997 RC-RT 9 

0.7385 0.7171 RC-REPT 10 

0.7613 0.6759 RS-M5P 11 

0.6584 0.9984 RS-RT 12 

0.6985 0.6027 RS-REPT 13 

 17 

 18 

Kstar IBk BA REPT RT RF M5P Model 

Number Test Train Test Train Test Train Test Train Test Train Test Train Test Train 

1.7237 2.0358 2 1.3516 1.4364 1.6407 1.9707 1.5542 1.9132 1.3493 1.7606 1.4122 1.4074 1.7055 1 

1.4353 1.6562 1.9515 0.2771 1.1659 1.1659 1.6731 1.0479 2.3232 0.2677 0.0972 0.6052 0.9264 1.273 2 

1.3859 1.2157 1.6317 0.1362 1.033 1.1573 1.6622 1.0201 2.4254 0.1119 0.9549 0.5721 1.2038 1.254 3 

1.3323 1.9932 1.4402 0.2118 1.0314 1.1451 1.0334 1.0334 1.3945 0.0897 0.9520 0.5603 1.2390 1.2117 4 

1.3295 0.6121 1.448 0.3725 1.0546 1.1259 1.7262 0.9853 1.7810 0.0832 1.0015 0.5551 1.2702 1.2258 5 

1.3312 0.3553 1.4619 0.3699 1.0782 1.1359 1.7317 0.985 1.5968 0.0727 0.9687 0.5489 1.2855 1.2007 6 

1.3651 0.2053 1.4438 0.3673 1.0702 1.140 1.7334 0.9813 1.8760 0.0604 0.9695 0.5579 1.0980 1.1911 7 

1.426 0.1284 1.4664 0.3671 1.073 1.1368 1.7553 1.1029 1.7433 0.0521 0.9582 0.5510 1.0456 1.1851 8 

1.5069 0.1074 2.1 0.3685 1.0754 1.1332 1.7551 1.1027 1.1808 0.0528 0.9591 0.5486 1.1476 1.1612 9 

1.5061 0.0833 2.1028 0.3686 1.0752 1.1326 1.7686 1.0922 1.4305 0.0586 1.011 0.5778 1.1311 1.1613 10 

1.5251 0.0748 2.0952 0.3668 1.0854 1.1327 1.7686 1.0922 1.7151 0.0475 0.9915 0.5667 1.1333 1.1598 11 

1.5302 0.0664 21039 0.3719 1.0851 1.1299 1.7686 1.0922 1.6121 0.0459 1.0101 0.5679 1.1375 1.1557 12 

1.5379 0.0545 2.1001 0.3653 1.0852 1.1306 1.7686 1.0922 1.6121 0.0458 1.033 0.5650 1.1931 1.1378 13 
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Table 7. Results of the evaluation criteria for standalone and hybrid models (testing phase( 19 

  RMSE MAE NSE PBIAS PSR 

       

Bagging Train 1.0685 0.327892 0.701855 -2.968 0.54603 

Test 0.51615 0.092012 0.746796 -10.511 0.50319 

       

IBK Train 0.21177 0.028575 0.969183 -0.3674 0.17555 

Test 1.17545 0.291303 0.506284 -6.3558 0.70265 

       

K Star Train 0.61199 0.146363 0.742641 5.27741 0.50731 

Test 1.08512 0.230033 0.579253 13.7364 0.64865 

       

M5P Train 1.27287 0.35674 -0.11331 0.14091 1.05514 

Test 0.75604 0.215459 0.79575 -7.3175 0.45194 

       

RF Train 0.56023 0.156762 0.784338 -0.1269 0.4644 

Test 0.77696 0.22041 0.784294 -6.3254 0.46444 

       

RT Train 0.08982 0.103748 0.994456 -0.0007 0.07446 

Test 1.13815 0.263821 0.53712 -4.5818 0.68035 

       

REPT Train 1.03332 0.328143 0.266305 0.00898 0.85656 

Test 1.36649 0.245161 0.33276 -11.274 0.81685 

       

RS-REPT Train 1.44856 0.412903 -0.44184 -0.0008 1.20077 

Test 0.87401 0.264426 0.727041 -6.3691 0.52245 

       

RS-RT Train 0.0867 0.029795 0.994835 0.00025 0.07187 

Test 0.91089 0.304613 0.703517 -8.9486 0.5445 

       

RS-M5P Train 1.31697 0.361223 -0.19179 0.24102 1.09169 

Test 0.77176 0.228345 0.787172 -5.3465 0.46133 

       

RC-REPT Train 1.31823 0.407127 -0.19407 -0.0021 1.09274 

Test 0.80897 0.271162 0.76615 -10.123 0.48358 

       

RC-RT Train 0.03642 0.021295 0.999088 0.00033 0.03019 

Test 0.90939 0.248427 0.704491 -8.3911 0.54361 

       

RC-RF Train 0.55407 0.159346 0.789053 0.33768 0.45929 

Test 0.88352 0.324295 0.74151 -3.5204 0.50842 
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Table 8: Optimum values for models parameters 20 

Parameter 

Optimum value 

BA IBK K STAR M5P RF RT REPT 
RC-

RT 

RS-

M5P 

RS-

REPT 

RC-

RF 

Bag size 

percentage 
100 _ _ _ 100 100 _ _ _ _ _ 

Batch size 100 100 _ _ 100 100 100 100 100 100 100 

Num decimal 

places 
2 2 2 2 2 2 2 2 2 2 2 

Num 

execution 

slots 

1 _ _ _ 1 _ _ 1 1 1 1 

Num iteration 10 _ _ _ 100 _ _ 10 10 10 10 

Seeds 1 _ _  1 1  1 1 1  

Min num 

instances 
_ _ _ 4 _ 2 2 _ _ _ _ 

Build 

regression tree 
_ _ _ False _ _ _ _ _ _ _ 

Do not check 

capabilities 
_ False False False _ _ False False _ _ False 

Debug _ False False False False False False False False False False 

Unpruned _ _ _ False _ _ False _ _ _ _ 

Use 

unsmoothed 
_ _ _ False _ _ _ _ _ _ _ 

Max depth _ _ _ _ 0 0 -1 _ _ _ _ 

Num feathers _ _ _ _ _ _ _ _ _ _ _ 

K value _ _ 0 _  0  _ _ _ _ 

Min variance 

Prop 
_ _ _ _ _ _ 0.001 _ _ _ _ 

Num folds _ _ _ _  0 _ _ _ _ _ 

Global blend _ _ 20 _ _ _ _ _ _ _ _ 

Entropic auto 

blend 
_ _ False _ _ _ _ _ _ _ _ 

Missing mode _ _ 

Average 

column 

entropy 

curve 

_ _ _ _ _ _ _ _ 

KNN _ 1 _ _ _ _ _ _ _ _ _ 

Cross-

validation 
_ False _ _ _ _ _ _ _ _ _ 

Distance 

weighting 
_ No _ _ _ _ _ _ _ _ _ 

Subspace size _ _ _ _ _ _ _ _ 0.5 0.5 _ 

Number of 

fold 
_ _ _ _ _ _ 3 _ _ _ _ 
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